GRYPHON™

Software Configuration Manual

$GRYPHON^{TM}$

SOFTWARE CONFIGURATION MANUAL

DATALOGIC S.p.A. Via Candini 2 40012 - Lippo di Calderara di Reno Bologna - Italy

Gryphon™

Ed.: 11/01

This manual refers to software version 2.0 and later

ALL RIGHTS RESERVED

Datalogic reserves the right to make modifications and improvements without prior notification.

Datalogic shall not be liable for technical or editorial errors or omissions contained herein, nor for incidental or consequential damages resulting from the use of this material.

Product names mentioned herein are for identification purposes only and may be trademarks and or registered trademarks of their respective companies.

© Datalogic S.p.A. 2000-2001

CONTENTS

	HOW TO USE THIS MANUAL	vii
1	INTRODUCTION	
1.1	Status Indicators	1
2	INITIAL SETUP	3
2.1	Gryphon™ Setup	4
	Restore Default	
	Set Radio Address (M series Only)	4
	Interface Selection	
2.1.1	Using Multiple M-Series Readers With Same Cradle	9
2.2	Gryphon™ M Setup for STARGATE™	
	Restore Default	10
	Set STARGATE™ Address	10
3	CONFIGURATION	12
	RS232 PARAMETERS	10
	Baud Rate	
	Parity	
	Data Bits	
	Stop Bits	
	Handshaking	
	ACK/NACK From Host Protocol	17
	FIFO	
	Inter-Character Delay	18
	Rx Timeout	18
	Serial Trigger Lock	19
	WEDGE PARAMETERS	20
	Keyboard Nationality	21
	Caps Lock	22
	Num Lock	22
	Inter-Character Delay	
	Inter-Code Delay	
	Keyboard Setting	
	Control Character Emulation	26
	PEN EMULATION	27
	Operating Mode	
	Minimum Output Pulse	
	Conversion To Code 39 and Code 128	

Overflow	
Output Level	31
Idle Level	32
Inter-Block Delay	32
·	
DATA FORMAT	33
Code Identifier	
Custom Code Identifier	37
Header	
Terminator	
Field Adjustment	
Field Adjustment Character	
Code Length Tx	
Character Replacement	۱ ۱۱ ۱
Character Replacement	42
POWER SAVE	11
Scan Rate	
Sleep State	
Enter Sleep Timeout	40 46
Standby	40
READING PARAMETERS	47
Operating Mode	
Hand-Held Operation	
Stand Operation	49
Hardware Trigger Mode	
Trigger-Off Timeout	
Flash Mode	
Reads per Cycle	
Safety Time	51
Beeper Intensity	
Beeper Tone	
Beeper Type	
Beeper Length	
PDF Decoding Recognition Intensity	53
Good Read Spot Duration	54
DECODING PARAMETERS	
Ink-Spread	
Overflow Control	
Interdigit Control	
Decoding Safety	57
Puzzle Solver™	58
CODE SELECTION	59
EAN/UPC Family	61
2/5 Family	

	Code 39 Family	66
	Code 128 Family	68
	Code 93	69
	Codabar Family	
	Codablock-A	72
	Codablock-F	72
	MSI	73
	Plessey	74
	Telepen	
	Delta IBM	76
	Code 11	77
	Code 16K	78
	Code 49	78
	PDF417	79
	ADVANCED FORMATTING	
	Concatenation	
	Advanced Formatting	84
	RADIO PARAMETERS	
	Radio Protocol Timeout	
	Power-Off Timeout	100
	Beeper Control for Radio Response	101
	Battery Type	
	Single Store	
	Address Stamping	
	Address Delimiter	103
4	REFERENCES	104
4.1	RS232 Parameters	
4.1.1	Handshaking	104
4.1.2	ACK/NACK from Host Protocol	105
4.1.3	FIFO	
4.1.4	RX Timeout	
4.2	Pen Parameters	
4.2.1	Minimum Output Pulse	
4.2.2	Conversion to Code 39 and Code 128	
4.2.3	Overflow	
4.2.4	Output and Idle Levels	
4.2.5	Inter-Block Delay	
4.3	Data Format	
4.3.1	Header/Terminator Selection	
4.4	Power Save	
4.4.1	Sleep State	
4.4.2	Enter Sleep Timeout	
4.4.3	Standby	
4.5	Reading Parameters	

4.5.1	Operatir	ng Mode1	13
4.5.2	Hardwar	e Trigger Mode1	13
4.5.3		Off Timeout1	
4.5.4		er Cycle1	
4.5.5		ime1	
4.6	Decodin	g Parameters 1	15
4.6.1	Ink-Spre	ad1	15
4.6.2	Overflow	v Control 1	15
4.6.3		t Control1	
4.7	Radio P	arameters (M Series Only)1	16
4.7.1	Radio P	rotocol Timeout1	16
4.7.2		Off Timeout1	
4.7.3		Control for Radio Response1	
4.7.4		tore 1	
4.7.5	Address	Stamping1	17
4.7.6		Delimiter1	
4.8	Configur	ation Copying Commands1	18
4.8.1	Copy Gr	yphon™ D-Series1	18
4.8.2	Copy Gr	yphon™ M-Series1	19
4.8.3		Й-Gryphon1	
4.9	C-GRYF	PHON Configuration1	21
APPENI	OIX A	HOST CONFIGURATION STRINGS	22
APPENI	DIX B	CODE IDENTIFIER TABLE	34
APPEN	OIX C	HEX AND NUMERIC TABLE1	37

HOW TO USE THIS MANUAL

Your reader is supplied with its own Quick Reference Manual which provides connection diagrams, reading diagrams, basic application parameter settings, default values, and specific technical features. You can use either your reader's Quick Reference Manual or this Manual for initial configuration in order to set the default values and select the interface for your application.

This manual can be used for complete setup and configuration of your reader.

To use this manual for initial setup see chapter 2.

If you wish to change the default settings, this manual provides complete configuration of your reader in an easy way.

To configure your reader:

- 1) Open the folded page in <u>Appendix C</u> with the hex-numeric table and keep it open during the device configuration.
- Read the Enter Configuration code ONCE, available at the top of each page of configuration.
- 3) Modify the desired parameters in one or more sections following the procedures given for each group.
- 4) Read the Exit and Save Configuration code ONCE, available at the top of each page of configuration.

Reference notes describing the operation of the more complex parameters are given in chapter 4.

Copy Command

A previously configured device (Master), can be used to send its configuration directly to other devices of the same type (Slaves). The particular procedure for each device is given in par. 4.8.

Sending Configuration Strings from Host

An alternative configuration method is provided in Appendix A using the RS232 interface. This method is particularly useful when many devices need to be configured with the same settings. Batch files containing the desired parameter settings can be prepared to configure devices quickly and easily.

Services Available at Our Web Site:

By completing the electronic form at our website, www.datalogic.com/hhd/gryphon_utilities.htm, you have free access to download the following items:

WinSetPlus™

A Windows-based utility program allows device configuration using a PC. It provides direct RS232 interface configuration as well as configuration barcode printing.

Loader:

The utility program necessary to load the application software (upgrades) onto your reader.

Software Upgrades:

Software upgrades for your reader to keep you updated with the latest improvements.

Configuration Manual

This manual and its relative updates can be downloaded for printing or used for online consultation.

These items are also available from your local Datalogic distributor.

1 INTRODUCTION

This manual provides all the necessary information for complete software configuration.

This product contains a built-in decoder and multi-standard interface.

It is designed for use in a wide variety of applications and environments including **commercial**, **office automation**, **retail**, and **light industrial** applications where large quantities of information need to be collected rapidly, easily and reliably.

1.1 STATUS INDICATORS

The reader has three indicators, LED, Beeper and Good Read Spot. They signal several operating conditions which are described in the tables below.

POWER UP

Beeper ¹	Meaning
LLLL	Parameters loaded correctly
H H H H long tones	Parameter loading error, reading or writing error in the non volatile memory
HLHL	Hardware error in EEPROM

CONFIGURATION

Beeper ¹	Meaning
нннн	correct entry or exit from Configuration mode
L	good read of a command
LLL	command read error

DATA ENTRY

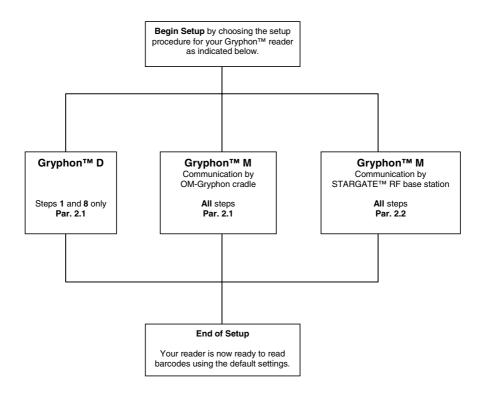
Beeper ¹	LED	Good Read Spot	Meaning
one beep²	ON	ON	correct read of a code in normal mode
H long	ON	ON	successful advanced format concatenation
ннн			timeout expired – operation not completed
H H long			error in advanced data formatting
	OFF	OFF	ready to read a code
H L long			tx buffer full (when FIFO is enabled) or tx error between Gryphon™ M and OM-Gryphon

¹ Only the Beeper Intensity command can modify these signals.

For M-series readers, normally this results in two beeps; the first indicates that the reader has decoded the code, the second indicates whether OM-Gryphon has received the data. See also par. 4.7.3.

H = high tone

L = low tone


² The data entry good read tone is user-configurable with <u>all</u> the Beeper commands in the Reading Parameters section.

2 INITIAL SETUP

For Gryphon™ D-Series readers, follow the setup procedure in par. 2.1.

For Gryphon[™] M-Series readers, two different setups are provided to select communication with the Host by <u>either</u> the OM-Gryphon cradle (par. 2.1) <u>or</u> by the STARGATE[™] RF base station (par. 2.2).

Proceed as shown in the following diagram:

2.1 GRYPHON™ SETUP

RESTORE DEFAULT

Read the restore default parameters code below.

1. Restore Gryphon™ Default

For D-Series readers, after reading the above code, skip to step 8, Interface Selection.

SET RADIO ADDRESS (M SERIES ONLY)

Follow the procedure below to set the radio address and bind Gryphon $^{\text{TM}}$ M to the OM-Gryphon cradle.

2. Enter configuration

3. Set Radio Address

four digits from Appendix C for the Gryphon™ Address (from **0000** to **1999**).

All readers used in the same area must have different addresses.

4. Exit and Save configuration

5. Read the Bind code to pair the Gryphon™ M to the cradle. The reader is dedicated to the cradle. Any previously bound reader will be excluded.

The green LED on the Gryphon $^{\rm TM}$ M will go on; the reader is ready to be positioned onto the cradle.

6. Firmly position the reader onto the cradle within 10 seconds, a beep will be emitted, signaling that the OM-GRYPHON cradle has been paired to the Gryphon™ M, and the green LED on the reader will go off.

7. Read the OM-GRYPHON restore default code:

INTERFACE SELECTION

8 Read the interface selection code for your application.

RS232

PFN

WEDGE

IBM AT or PS/2 PCs

IBM XT

PC Notebook

IBM SURE1

IBM Terminal 3153

WEDGE (continued)

IBM Terminals 31xx, 32xx, 34xx, 37xx:

To select the interface for these IBM Terminals, read the correct <u>KEY TRANSMISSION</u> code. Select the <u>KEYBOARD TYPE</u> if necessary (default = advanced keyboard).

KEY TRANSMISSION MODE

make-only keyboard

make-break keyboard

KEYBOARD TYPE

◆ advanced keyboard

typewriter keyboard

WEDGE (continued)

ALT MODE

The ALT-mode selection allows barcodes sent to the PC to be interpreted correctly independently from the Keyboard Nationality used. You do not need to make a Keyboard Nationality selection.

(default = Num Lock Unchanged). Make sure the Num Lock key on your keyboard is ON.

IBM AT - ALT mode

PC Notebook - ALT mode

WYSE TERMINALS

ANSI Keyboard

PC Keyboard

ASCII Keyboard

VT220 style Keyboard

WEDGE (continued)

DIGITAL TERMINALS

APPLE

2.1.1 Using Multiple M-Series Readers With Same Cradle

If you want to use several M-Series readers associated with the same cradle, you must first **Bind** the cradle with one of the readers (see previously described configuration procedure).

<u>Successive readers</u> can be associated with the same cradle by following the configuration procedure substituting the **Bind** command with **Join**.

5.

The green LED on the Gryphon™ M will blink: the reader is ready to be positioned onto the cradle.

ATTENTION

If the cradle is <u>not</u> **Bound** to a reader, its address assumes a random value which can cause conflicts and malfunctions to other cradles within its range.

YOUR READER IS NOW READY TO READ BARCODES.

To change the defaults see Chapter 3.

2.2 GRYPHON™ M SETUP FOR STARGATE™

RESTORE DEFAULT

Read the restore default parameters code below.

1. Restore Gryphon™ M Default

SET STARGATE™ ADDRESS

Follow the procedure below to configure a Gryphon™ M reader to communicate with the STARGATE™ RF base station.

2. Enter configuration

3. Set the connection according to the length of the codes to be read:

Code Length ≤240 Characters

Code Length >240 Characters

4. Set Radio Address

Read the code above and four digits from the Numeric table in the range **0000-1999**.

5. Set First STARGATE™ Address

Read the code above and four digits from the Numeric table in the range **0000-1999**.

6. Set Last STARGATE™ Address

Read the code above and four digits from the Numeric table in the range **0000-1999**.

The first and last base station addresses must have the same value whenever the system is composed of a single STARGATE™.

NOTE

7. Exit and Save configuration

YOUR READER IS NOW READY TO READ BARCODES.

To change the defaults see Chapter 3.

3 CONFIGURATION

Once your reader is setup, you can change the default parameters to meet your application needs. Refer to chapter 2 for initial configuration in order to set the default values and select the interface for your application.

In this manual, the configuration parameters are divided into logical groups making it easy to find the desired function based on its reference group.

The first three groups are for Standard Interface parameter configuration:

- RS232
- WEDGE
- PEN EMULATION

The following parameter groups are common to all interface applications:

DATA FORMAT parameters regard the messages sent to the Host system for all interfaces except Pen Emulation.

POWER SAVE manages overall current consumption in the reading device.

READING PARAMETERS control various operating modes and indicator status functioning.

DECODING PARAMETERS maintain correct barcode decoding in certain special reading conditions.

CODE SELECTION parameters allow configuration of a personalized mix of codes, code families and their options.

ADVANCED FORMATTING PARAMETERS allow code concatenation and advanced formatting of messages towards the Host. It cannot be used with Pen Emulation connections.

RADIO PARAMETERS (M series only) allow configuration of radio protocol timeouts.

RS232 PARAMETERS

\odot	BAUD RATE	•
•	PARITY	•
•	DATA BITS	•
•	STOP BITS	•
•	HANDSHAKING	•
•	ACK/NACK FROM HOST PROTOCOL	•
•	FIFO	•
•	INTER-CHARACTER DELAY	•
•	RX TIMEOUT	•
•	SERIAL TRIGGER LOCK	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

BAUD RATE

150 baud

300 baud

600 baud

1200 baud

2400 baud

4800 baud

◆ 9600 baud

19200 baud

38400 baud

PARITY

DATA BITS

STOP BITS

HANDSHAKING

hardware (RTS/CTS)

software (XON/XOFF)

See par. 4.1.1 for details.

ACK/NACK FROM HOST PROTOCOL

See par. 4.1.2 for details, particularly on implementing this parameter with Gryphon™ M.

FIFO

See par. 4.1.3 for details.

INTER-CHARACTER DELAY

delay between characters transmitted to Host

Read 2 numbers from the table where:

00 = DELAY disabled

01-99 = DELAY from 1 to 99 milliseconds

◆ delay disabled

RX TIMEOUT

timeout control in reception from Host

Read 2 numbers from the table where:

00 = TIMEOUT disabled

01-99 = TIMEOUT from .1 to 9.9 seconds

◆ rx timeout 5 seconds

See par. 4.1.4 for details.

SERIAL TRIGGER LOCK

D SERIES ONLY

enable and select characters

Read 2 characters from the Hex/Numeric table in the range 00-FE where:

- First character enables device trigger
- Second character inhibits device trigger until the first character is received again.

WEDGE PARAMETERS

⊙	KEYBOARD NATIONALITY	•
•	CAPS LOCK	•
•	Num Lock	•
•	INTER-CHARACTER DELAY	•
0	INTER-CODE DELAY	•
•	KEYBOARD SETTING	•
•	WEDGE CONTROL CHARACTER	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

KEYBOARD NATIONALITY

English

CAPS LOCK

caps lock OFF

caps lock ON

Select the appropriate code to match your keyboard caps lock status.

Note: For PC Notebook interface selections, the caps lock status is automatically recognized, therefore this command is not necessary.

NUM LOCK

toggle num lock

num lock unchanged

This selection is used together with the Alt Mode interface selection for AT or Notebook PCs.

It changes the way the Alt Mode procedure is executed, therefore it should be set as follows:

- if your keyboard Num Lock is normally on use num lock unchanged
- if your keyboard Num Lock is normally off use toggle num lock

In this way the device will execute the Alt Mode procedure correctly for your application.

INTER-CHARACTER DELAY

delay between characters transmitted to Host

Read 2 numbers from the table where:

00 = DELAY disabled

01-99 = DELAY from 1 to 99 milliseconds

delay disabled

INTER-CODE DELAY

delay between codes transmitted to Host

Read 2 numbers from the table where:

00 = DELAY disabled

01-99 = DELAY from **1** to **99** seconds

◆ delay disabled

KEYBOARD SETTING

ALPHANUMERIC KEYBOARD SETTING

The reader can be used with terminals or PCs with various keyboard types and nationalities through a simple keyboard setting procedure.

The type of computer or terminal must be selected before activating the keyboard setting command.

Keyboard setting consists of communicating to the reader how to send data corresponding to the keyboard used in the application. The keys must be set in a specific order.

Press and release a key to set it.

Some characters may require more than one key pressed simultaneously during normal use (refer to the manual of your PC or terminal for keyboard use). The exact sequence must be indicated to the reader in this case pressing and releasing the different keys.

Example:

If one has to press the "Shift" and "4" keys simultaneously on the keyboard to transmit the character "\$" to the video, to set the "\$", press and release "Shift" then press and release "4".

Each pressed and released key must generate an acoustic signal on the reader, otherwise repress the key. Never press more than one key at the same time, even if this corresponds to the normal use of your keyboard.

Press "Backspace" to correct a wrong key entry. In this case the reader emits 2 beeps.

Note: "CAPS LOCK" and "NUM LOCK" must be off before starting the keyboard setting procedure. "SHIFT" must be repressed for each character and cannot be substituted by "CAPS LOCK".

setting the alphanumeric keyboard

Read the code above

press the keys shown in the following table according to their numerical order.

Some ASCII characters may be missing as this depends on the type of keyboard: these are generally particular characters relative to the various national symbologies. In this case:

- The first 4 characters (Shift, Alt, Ctrl, and Backspace) can only be substituted with keys not used, or substituted with each other.
- characters can be substituted with other single symbols (e.g. "SPACE") even if not included in the barcode set used.
- characters can be substituted with others corresponding to your keyboard.

The reader signals the end of the procedure with 2 beeps indicating the keys have been registered.

01 : Shift		
02 : Alt		
03 : Ctrl		
04 : Backspace		
05 : SPACE	28 : 7	51 : N
06:!	29 : 8	52 : O
07 : "	30 : 9	53 : P
08:#	31 : :	54 : Q
09:\$	32:;	55 : R
10 : %	33 : <	56 : S
11 : &	34 : =	57 : T
12:"	35 : >	58 : U
13:(36 : ?	59 : V
14:)	37 : @	60 : W
15:*	38 : A	61 : X
16:+	39 : B	62 : Y
17:,	40 : C	63 : Z
18 : -	41 : D	64 : [
19:.	42 : E	65 : \
20 : /	43 : F	66 :]
21 : 0	44 : G	67 : ^
22 : 1	45 : H	68 : _ (underscore)
23 : 2	46 : I	69 : `
24 : 3	47 : J	70 : {
25 : 4	48 : K	71 :
26 : 5	49 : L	72:}
27 : 6	50 : M	73 : ~
		74 : DEL

Gryphon™ M Series Only

When working with Gryphon™ M series readers, the keyboard setup functioning is signaled by the LEDs on the OM-Gryphon cradle. Each key stroke corresponds to a double blinking of the green LED.

By pressing the Backspace key the red LED on the OM-Gryphon cradle blinks, while the green LED stays on.

Do not place the reader onto the OM-Gryphon cradle during this procedure. Otherwise, the battery charging will occur modifying the LEDs functioning.

CAUTION

Once the procedure has been completed, the green LED turns off.

CONTROL CHARACTER EMULATION

⊙	OPERATING MODE	•
•	MINIMUM OUTPUT PULSE	•
•	CONVERSION TO CODE 39	•
•	OVERFLOW	•
•	OUTPUT LEVEL	•
•	IDLE LEVEL	•
⊙	INTER-BLOCK DELAY	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

OPERATING MODE

The operating mode parameters are complete commands and do not require reading the Enter and Exit configuration codes.

◆ interpret mode

Interprets commands without sending them to the decoder.

transparent mode

Sends commands to the decoder without interpreting them.

MINIMUM OUTPUT PULSE

high resolution code emulation

low resolution code emulation

See par. 4.2.1 for details.

CONVERSION TO CODE 39 AND CODE 128

▶ disable conversion to Code 39

Transmits codes in their original format.

□ enable conversion to Code 39

Converts codes read into Code 39 format.

enable conversion to Code 128

Converts codes read into Code 128 format.

- ► = default value for Gryphon™ D Series readers
- = default value for Gryphon™ M Series readers

See par. 4.2.2 for details.

OVERFLOW

See par. 4.2.3 for details.

OUTPUT LEVEL

◆ normal (white = logic level 0)

inverted
(white = logic level 1)

See par. 4.2.4 for details.

IDLE LEVEL

inverted (white level)

See par. 4.2.4 for details.

INTER-BLOCK DELAY

delay between character blocks transmitted to Host

Read 2 numbers from the table where:

00 = DELAY disabled

01-99 = DELAY from .1 to 9.9 seconds

◆ DELAY disabled

See par. 4.2.5 for details

NOT FOR PEN INTERFACES

\odot	CODE IDENTIFIER	•
•	CUSTOM CODE IDENTIFIER	•
•	HEADER	•
•	TERMINATOR	•
•	FIELD ADJUSTMENT	•
•	FIELD ADJ. CHARACTER	•
•	CODE LENGTH TX	•
•	CHARACTER REPLACEMENT	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

CODE IDENTIFIER TABLE			
CODE	AIM STANDARD	DATALOGIC STANDARD	Custom
2/5 interleaved] l <i>y</i>	N	
2/5 industrial	1 X y	Р	
2/5 normal 5 bars] S y	0	
2/5 matrix 3 bars] X y	Q	
EAN 8] E 4	A	
EAN 13] E 0	В	
UPC A	1X y	С	
UPC E] X y	D	
EAN 8 with 2 ADD ON] E 5	J	
EAN 8 with 5 ADD ON] E 6	K	
EAN 13 with 2 ADD ON]E1	L	
EAN 13 with 5 ADD ON	1E 2	M	
UPC A with 2 ADD ON	jXy	F	
UPC A with 5 ADD ON	j X y	G	
UPC E with 2 ADD ON	1X y	Н	
UPC E with 5 ADD ON] X y	ı	
Code 39] A y	V	
Code 39 Full ASCII] A y	W	
CODABAR] F y	R	
ABC CODABAR]Xy	S	
Code 128] C y	T	
EAN 128	1C y	k	
ISBT 128	1 C4	f	
Code 93	1G v	Ü	
CIP/39	1X v	Y	
CIP/HR] X y	e	
Code 32	1X y	X	
Codablock-A	106	n	
Codablock-F Std	104	ı	
Codablock-F EAN	105	m	
MSI	1 M v	Z	
Plessey Standard	1P0	a	
Plessey Anker	1P1	0	
Telepen	1X 0	d	
Delta IBM	1X 0	C	
Code 11] H y	b	
Code 16K	1K 0	p	
Code 49] T y	q	
PDF417	1L0	r	

- AIM standard identifiers are not defined for all codes: the X identifier is assigned to the code for which the standard is not defined. The y value depends on the selected options (check digit tested or not, check digit tx or not, etc.).
- When customizing the Datalogic Standard code identifiers, 1 or 2 identifier characters can
 be defined for each code type. If only 1 identifier character is required, the second
 character must be selected as FF (disabled).
- The code identifier can be singly disabled for any code by simply selecting **FF** as the first identifier character.
- Write in the Custom character identifiers in the table above for your records.

CODE IDENTIFIER

Datalogic standard

AIM standard

custom

CUSTOM CODE IDENTIFIER

define custom code identifier(s)

① Read the above code.

(Code Identifiers default to Datalogic standard, see table on previous page).

- Select the code type from the code table in Appendix B for the identifier you want to change.
- ③ You can define 1 or 2 identifier characters for each code type. If only 1 identifier character is required, the second character must be selected as FF (disabled). Read the hexadecimal value corresponding to the character(s) you want to define as identifiers for the code selected in step ②: valid characters are in the range 00-FE.

Example: To define Code 39 Code Identifier = @

one character header

three character header

five character header

seven character header

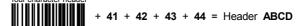
HEADER

no header

two character header

four character header

six character header


eight character header

After selecting one of the desired Header codes, read the character(s) from the HEX table.

Valid characters for all readers are in the range: 00-FE

Example:

For more details about default and WEDGE Interface Extended Keyboard values, see par. 4.3.1.

one character terminator

three character terminator

five character terminator

seven character terminator

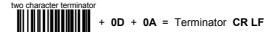
TERMINATOR

no terminator

two character terminator

four character terminator

six character terminator


eight character terminator

After selecting **one** of the desired Terminator codes, read the character(s) from the HEX table.

Valid characters for all readers are in the range: **00-FE**

Example:

For more details about default and WEDGE Interface Extended Keyboard values, see par. 4.3.1.

FIELD ADJUSTMENT

disable field adjustment

Field adjustment allows a number of characters n, to be added to or subtracted from the barcode read. The adjustment can be different for each enabled code type. To <u>define</u> the field adjustment:

① Read the enable field adjustment code:

enable field adjustment

- ② Select the code type from the <u>Code Identifier Table</u> in Appendix B.
- 3 Select the type of adjustment to perform:

right addition

right deletion

left deletion

Read a number in the range 01 - 32 from the Hex/Numeric Table to define how many characters to add or delete:

Conditions:

- Adjustment is only performed on the barcode data, the Code Identifier and Code Length Transmission fields are not modified by the field adjustment parameter.
- If the field setting would subtract more characters than exist in the barcode, the subtraction will take place only to code length 0.

Example: To add 4 characters to the right of Standard Code 39 Codes:

FIELD ADJUSTMENT CHARACTER

① Read the field adjustment character code:

field adjustment character

② Read the hexadecimal value corresponding to the character you want to use for field adjustment.

Valid characters for all readers are in the range:

00-FE

Example:

To define the field adjustment character = A:

Read IIII

+ 41

CODE LENGTH TX

◆ code length not transmitted

code length transmitted in variable-digit format

code length transmitted in fixed 4-digit format

The code length is transmitted in the message after the Headers and Code Identifier characters. The code length is *calculated* after performing any field adjustment operations.

DATA FORMAT

CHARACTER REPLACEMENT

disable character replacement

This parameter allows up to three characters to be replaced from the barcode read. These substitutions are stored in memory. To define each character replacement:

① Read one of the following character replacement codes:

first character replacement

second character replacement

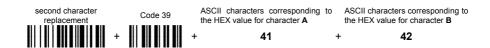
third character replacement

② From the Code Identifier Table in Appendix B, read the Code Identifier for the desired code family.

0 = character replacement will be effective for all code families.

- From the Hex/Numeric Table read two characters corresponding to the Hex value which identifies the character to be replaced. Valid values for all readers are in the range 00-FE.
- From the Hex/Numeric Table read two characters corresponding to the Hex value which identifies the new character to replace. Valid values for all readers are in the range 00-FE

FF = the character to be replaced will be substituted with no character, that is, it will be removed from the code.


Example:

The following strings define:

- First Character Replacement: substitution in Code 39 barcodes of all occurrences of the 0 character with the 1 character.
- Second Character Replacement: substitution in Code 39 barcodes of all occurrences of the A character with the B character.

For Code 39 codes containing the string "0123", the contents transmitted will be "1123".

For Code 39 codes containing the string "ABCD", the contents transmitted will be "BBCD".

POWER SAVE

O	SCAN RATE	•
•	SLEEP STATE	•
•	ENTER SLEEP TIMEOUT	•
•	STANDBY	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

POWER SAVE

SCAN RATE

67 scans per sec.

135 scans per sec.

◆ 270 scans per sec.

A lower scan rate reduces power consumption but can lengthen reading response time.

SLEEP STATE

◆ disable

See par. 4.4.1 for details.

For M-series readers, sleep state is entered immediately after reading a code and is not configurable.

POWER SAVE

ENTER SLEEP TIMEOUT

Read 2 numbers in the range 00-99:

00 = Enter Sleep state immediately

01-99 = corresponds to a max. 9.9 sec. delay before entering the Sleep state.

See par. 4.4.2 for details.

STANDBY

See par. 4.4.3 for details.

For M-series readers, standby is always enabled and is not configurable.

\odot	OPERATING MODE	•
•	HAND-HELD OPERATION	•
•	STAND OPERATION	•
•	HARDWARE TRIGGER MODE	•
•	TRIGGER-OFF TIMEOUT	•
•	FLASH MODE	•
•	READS PER CYCLE	•
•	SAFETY TIME	•
•	BEEPER INTENSITY	•
•	BEEPER TONE	•
•	BEEPER TYPE	•
•	BEEPER LENGTH	•
•	PDF Decoding Recognition INTENSITY	•
•	GOOD READ SPOT DURATION	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

OPERATING MODE

You can pre-configure both Hand-Held and Stand operating modes, and with the codes below, you can switch between them. See par. 4.5.1 for details. Stand operation is not advised for M-Series readers since it constantly consumes battery power.

◆ hand-held operation

automatic

stand operation

HAND-HELD OPERATION

hardware trigger

software trigger

hardware trigger ready

automatic

*always on

^{*} not available for M-series readers

STAND OPERATION

software trigger

* not available for M-series readers

HARDWARE TRIGGER MODE

◆ trigger active level

See par. 4.5.2 for details.

TRIGGER-OFF TIMEOUT

Read 2 numbers in the range 00-99:

00 = disables the trigger-off timeout

01-99 = corresponds to a max. 99 sec. delay after the trigger press to allow the reader to turn off automatically.

◆ trigger-off timeout disabled

See par. 4.5.3 for details.

FLASH MODE

Read 2 numbers in the range 01-99:

01 to 99 = from .1 to 9.9 seconds.

◆ Flash-ON = 1 sec. Flash-OFF = 0.6 sec

READS PER CYCLE

◆ one read per cycle

multiple reads per cycle

See par. 4.5.4 for details.

SAFETY TIME

safety time

Limits same code consecutive reading.

Read 2 numbers in the range 00-99:

00 = no same code consecutive reading until reader is removed (no decoding) for at least 400 ms.

01 to 99 = timeout from .1 to 9.9 seconds before a consecutive read on same code.

◆ safety time = 0.5 sec

See par. 4.5.5 for details.

BEEPER INTENSITY

* very low intensity

medium intensity

low intensity

high intensity

* This sets the beeper OFF for data entry, while for all other beeper signals it has the meaning very low intensity.

The Intensity parameter is effective for all operating conditions described in par. 1.1.

BEEPER TONE

tone 1

tone 3

◆ tone 2

tone 4

BEEPER TYPE

BEEPER LENGTH

PDF DECODING RECOGNITION INTENSITY

GOOD READ SPOT DURATION

•	INK-SPREAD	⊙
•	OVERFLOW CONTROL	•
•	INTERDIGIT CONTROL	•
•	DECODING SAFETY	•
•	Puzzle Solver™	•

Before changing these parameter values read the descriptions in par. 4.6.

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

INK-SPREAD

See par. 4.6.1 for details.

OVERFLOW CONTROL

See par. 4.6.2 for details.

INTERDIGIT CONTROL

See par. 4.6.3 for details.

DECODING SAFETY

four reads

Required number of good reads before accepting code.

PUZZLE SOLVER™

In the case of damaged or poorly printed codes, this parameter allows reading multiple parts of the single code to reconstruct it.

To read codes using this technology, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

Conditions:

This parameter is only valid for the following codes:

EAN 8 without Add-on	EAN 13 without Add-on	UPC A without Add-on
Code 128	Code 39	

- Codablock-A and Codablock-F codes are automatically disabled.
- For Code 39, Check digit control without transmission is forced.
- PuzzleSolver™ is disabled when code ISBT 128 is enabled.

\odot	EAN/UPC FAMILY	•
•	2/5 FAMILY	•
•	CODE 39 FAMILY	•
•	CODE 128 FAMILY	•
•	CODABAR FAMILY	•
•	CODE 93	•
•	CODABLOCK-A	•
•	CODABLOCK-F	•
•	MSI	•
•	PLESSEY	•
•	TELEPEN	•
•	DELTA IBM	•
•	CODE 11	•
•	CODE 16K	•
•	CODE 49	•
•	PDF417 PDF READERS ONLY	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

DISABLE ALL CODE FAMILIES

The reader allows up to 5 code selections. This does not limit the number of CODES enabled to 5, as it depends on the code family.

SINGLE SELECTIONS =

- ONE combination code from the EAN family
- ONE code from the 2/5 family

Example

5 code selections:

- 1. 2/5 Interleaved
- 2. 2/5 Industrial
- 3. Code 128 + EAN 128
- 4. Code 39 Full ASCII + Code 32
- 5. UPC A/UPC E

In this section all **SINGLE** code selections are <u>underlined and in bold</u>.

EAN/UPC FAMILY

disable the family

① Read the desired family code

Note:

Since the EAN/UPC without ADD ON code selection is enabled by default, to correctly enable another selection, first disable the family.

EAN 8/EAN 13/UPC A/UPC E with and without ADD ON

WITHOUT ADD ON

♦ EAN 8/EAN 13/UPC A/UPC E

EAN 8/EAN 13

UPC A/UPC E

WITH ADD ON 2 AND 5

EAN 8/EAN 13/UPC A/UPC E

EAN 8/EAN 13

UPC A/UPC E

WITH ADD ON 2 ONLY

EAN 13

UPC A/UPC E

WITH ADD ON 5 ONLY

EAN 8/EAN 13

HPC A/HPC F

EAN/UPC CHECK DIGIT TX SELECTIONS

For each code type in this family you can choose to transmit the check digit or not

CHECK DIGIT TRANSMISSION

EAN 8

EAN 13

UPC A

UPC E

NO CHECK DIGIT TRANSMISSION

EAN 8

EAN 13

UPC A

UPC E

CONVERSION OPTIONS

UPC E to UPC A conversion

UPC E to EAN 13 conversion

UPC A to EAN 13 conversion

EAN 8 to EAN 13 conversion

enable only ISBN conversion

enable only ISSN conversion

enable both ISBN and ISSN conversion

disable both ISBN and ISSN conversion

2/5 FAMILY

disable the family

① Read the desired family code

B

② Read a check digit selection

CHECK DIGIT TABLE

no check digit control

Normal 2/5 (5 Bars)

◆ check digit control and transmission

Industrial 2/5 (IATA)

Check digit control without transmission

③ Read 4 numbers for the code length where:

First 2 digits = minimum code length.

Second 2 digits = maximum code length.

The maximum code length is 99 characters.

The minimum code length must always be less than or equal to the maximum. Examples:

0199 = variable from 1 to 99 digits in the code.

1010 = 10 digit code length only.

B

The pharmaceutical code below is part of the 2/5 family but has no check digit nor code length selections.

Code CIP/HR

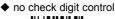
French pharmaceutical code

CODE 39 FAMILY

disable the family

① Read the desired family code

② Read a check digit selection



◆ Standard Code 39

CHECK DIGIT TABLE

check digit control and transmission

check digit control without transmission

The pharmaceutical codes below are part of the Code 39 family but have no check digit selections.

CODE LENGTH (optional)

The code length selection is valid for the entire Code 39 family

Read the code + 4 numbers for the code length where:

First 2 digits = minimum code length.

Second 2 digits = maximum code length.

set code length

The maximum code length is 99 characters. The minimum code length must always be less than or equal to the maximum.

Examples: **0199** = variable from 1 to 99 digits in the code. **1010** = 10 digit code length only.

CODE 128 FAMILY

disable the family

① Read the desired family code

EAN 128

control without transmission of check digit

Add GS Before Code

Code EAN 128 uses the ASCII <GS> character to separate a variable length code field from the next code field. This character can also be added before the code.

If the $\langle GS \rangle$ character has been modified in the Character Replacement parameter, the new character is affected by this command.

Read the ISBT 128 code and then select the appropriate concatenation code below.

enable all concatenations

disable all concatenations

Enabling ISBT 128 automatically disables Puzzle Solver™.

CODE 93

◆ disable the code

Code 93

control without transmission of check digit

CODABAR FAMILY

① Read the desired equality control code

② Read a start/stop transmission selection

START/STOP CHARACTER TRANSMISSION

no start/stop character equality control

no transmission

start/stop character equality control

transmission

The Codabar ABC code below uses a fixed start/stop character transmission selection.

no start/stop character equality control but transmission.

Codabar ABC Forced Concatenation

enable Codabar ABC with forced concatenation

non start/stop character equality control but transmission

CODE LENGTH (optional)

The code length selection is valid for the entire Codabar family

Read the code + 4 numbers for the code length where:

First 2 digits = minimum code length.

Second 2 digits = maximum code length.

The maximum code length is 99 characters. The minimum code length must always be less than or equal to the maximum.

Examples: **0199** = variable from 1 to 99 digits in the code. **1010** = 10 digit code length only.

START/STOP CHARACTER CASE IN TRANSMISSION

The start/stop character case selections below are valid for the entire Codabar family:

transmit start/stop characters in lower case

transmit start/stop characters in upper case

CODABLOCK-A

disable the code

Codablock-A

Notes:

- Enabling Codablock-A automatically disables the entire Code 39 family and vice-versa.
- Enabling Codablock-A automatically disables Puzzle Solver™.

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

CODABLOCK-F

disable the family

Codablock-F Standard

Notes:

Enabling Codablock-F automatically disables Puzzle Solver™.

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

MSI

disable the family

Enable the code by selecting one of the check digit selections.

no check digit control

MOD10 check digit control no check digit transmission

MOD10 check digit control check digit transmission

MOD11 - MOD10 check digit control no check digit transmission

MOD11 - MOD10 check digit control check digit transmission

MOD10 - MOD10 check digit control no check digit transmission

MOD10 - MOD10 check digit control check digit transmission

PLESSEY

disable the family

Enable the code by selecting one of the check digit selections.

Standard Plessey

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

Anker Plessey

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

TELEPEN

disable the family

Enable the code by selecting one of the check digit selections.

Numeric Telepen

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

Alphanumeric Telepen

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

DELTA IBM

♦ disable the family

Enable the code by selecting one of the check digit selections.

no check digit control

Type 1 check digit control

Type 2 check digit control

CODE 11

◆ disable the family

Enable the code by selecting one of the check digit selections.

no check digit control

Type C check digit control check digit transmitted

Type C check digit control check digit not transmitted

Type K check digit control check digit transmitted

Type K check digit control check digit not transmitted

Type C and Type K check digit control check digits transmitted

Type C and Type K check digit control check digits not transmitted

CODE 16K

♦ disable the code

Code 16K

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

CODE 49

◆ disable the code

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

PDF417

disable the code

Only for PDF417 series readers.

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

NOT FOR PEN INTERFACES

○ CONCATENATION○ ADVANCED FORMATTING○

Please follow the setup procedure carefully for these parameters.

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of page .
- 2. Read configuration codes precisely following the numbered procedure given.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code ONCE, available at the top of page.

CONCATENATION

Permits the concatenation of two codes defined by code type and length. It is possible to set a timeout for the second code reading and to define code transmission if the timeout expires.

The order of transmission is CODE 1-CODE 2.

Define Concatenation

Code 1

code ID

Read the code type from the Code Identifier Table beginning in Appendix B.

Read a number in the range 01-99 from the Hex/Numeric Table.

2

Read the code type from the Code Identifier Table beginning in Appendix B.

B

3

Read a number in the range 01-99 from the Hex/Numeric Table.

Concatenation Result Code ID

use code 1 ID

use code 2 ID

Since you can concatenate codes from different families, you must select the Code ID character of the resulting code. The Code ID character will be sent in the output message only if it is enabled according to the Code Identifier selection (Datalogic, AIM, or Custom).

4

Concatenation Timeout

Read two numbers in the range **00** to **99** 00= no timeout 01-99 = timeout from 1 to 99 seconds

5

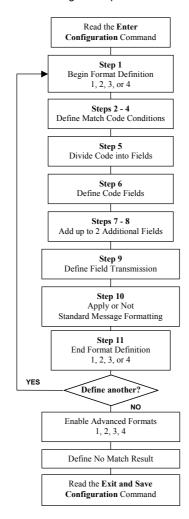
Transmission after Timeout

no code transmitted after timeout

only code 1 transmitted (if read) after timeout

only code 2 transmitted (if read) after timeout

either code 1 or code 2 transmitted after timeout

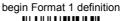


Define the timeout, which determines the valid waiting period between the two codes, in order to accept concatenation. If the timeout expires, the resulting action will be based on the following selection.

ADVANCED FORMATTING

Advanced formatting has been designed to offer you complete flexibility in changing the format of barcode data <u>before</u> transmitting it to the host system. This formatting will be performed when the barcode data meets certain criteria which you will define in the following procedure.

Up to 4 advanced code management formats can be defined and saved in memory. For each format you must complete the entire configuration procedure:



1

B

begin Format 2 definition

begin Format 4 definition

2

Match Code Type

match code type

Read the above code + the code type to match from the <u>Code Identifier Table</u> in Appendix B.

OR

3

Match Code Length

match code length

Read the above code + two numbers in the range 01 to 99 for the exact code length.

OR

any code length

4

Match with Predefined Characters

no match

OR

3

3

match with 1 character

match with a 2-character string

match with a 3-character string

3

After selecting the predefined match code, read the character(s) from the HEX table. Range of characters = 00-FE.

Example:

Match code with the 2-character predefined string = "@@".

Match with a 2-character string

Read

+40 + 40

AND

position of first character in predefined string

Read the above code + two numbers in the range 01 to 99 representing the character position in the code where the first character of the predefined string must be found.

Read **00** if the match string can be found in any character position.

5

Divide Code into Fields

divide code into fields

Read one number in the range 1 to 5 to divide the code into fields.

6

Define Code Fields

define code fields

Each code field length can be set by either:

a) defining a field separator character to be found in the code itself. In this case you can choose to discard the code separator character or include it as the last character of the field.

OR BY

b) specifying a specific character length up to the maximum of 99 characters.

OR BY

c) selecting the last field as variable length (if any).

You must define the same number of fields as selected in step 5, including fields that will not be transmitted.

DEFINE FIELD 1 BY: EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = 00-FE.

discard separator

include separator

OR

b) **[**[₹]

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

c)

this is the last field (variable length)

AND

Field 1 Terminators

no field terminators

1 field terminator

TE T

DEFINE FIELD 2 BY: EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = 00-FE. discard separator

include separator

OR

b) 🔯

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

c)

this is the last field (variable length)

Field 2 Terminators

no field terminators

1 field terminator

2 field terminators

DEFINE FIELD 3 BY: EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

field length

b) 😰

Read two numbers in the range 01 to 99 to define the field length.

OR

this is the last field (variable length)

c)

AND

Field 3 Terminators

no field terminators

B

1 field terminator

B

2 field terminators

DEFINE FIELD 4 BY: EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = 00-FE. discard separator

include separator

OR

field length

b) 🔯

Read two numbers in the range 01 to 99 to define the field length.

OR

c)

this is the last field (variable length)

AND **Field 4 Terminators**

no field terminators

1 field terminator

B

2 field terminators

DEFINE FIELD 5 BY:

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

b) 🔯

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

this is the last field (variable length)

c)

AND

Field 5 Terminators

no field terminators

B

REP.

2 field terminators

7 First Additional Fixed Field

1 character fixed field

2 character fixed field

3 character fixed field

4 character fixed field

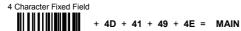
5 character fixed field

6 character fixed field

After selecting one of the Additional Fixed Field codes, read the corresponding character(s) from the HEX table. Range of characters = **00-FE**.

Example:

E.


B

B

TAP

(A)

B

8

B

B

3

TAP

Second Additional Fixed Field

no fixed field

1 character fixed field

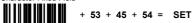
2 character fixed field

3 character fixed field

4 character fixed field

5 character fixed field

6 character fixed field


(A)

B

After selecting one of the Additional Fixed Field codes, read the corresponding character(s) from the HEX table. Range of characters = **00-FE**.

Example:

3 Character Fixed Field

9

Field Transmission

number of fields to transmit

Read one number in the range 1 to 7 for the number of fields to transmit. Include only fields to be transmitted.

Field Order Transmission

Read the codes corresponding to the fields to transmit in the order in which they are to be transmitted, see example.

field 1

field 3

field 5

additional field 2

field 2

field 4

additional field 1

Example:

The barcode is divided into 2 defined fields plus 1 additional fixed field.

Transmit in the order: Field 2, Additional Field 1, Field 1.

Number of Fields

10

Standard Formatting

do not apply standard formatting

apply standard formatting

After performing Advanced Formatting on the barcode read, Standard Formatting (Headers, Code Length, Code ID, Terminators) can be applied to the message to be transmitted.

11

End Format Definition

end Format 1 definition

end Format 2 definition

end Format 3 definition

end Format 4 definition

Enable Advanced Format

no Advanced Formats enabled

Advanced Format 1

disable

Advanced Format 2

disable

Advanced Format 3

disable

Advanced Format 4

disable

No Match Result

clear data - no transmission

transmit data using standard format

This selection determines the action to be taken when codes read do not conform to the advanced format requisites (no match).

- Codes not matching can be ignored, cleared from memory and not transmitted.
- Codes not matching can be transmitted using the Standard formatting (Headers, Code Length, Code ID, Terminators).

M SERIES ONLY

⊙	RADIO PROTOCOL TIMEOUT	•
•	POWER-OFF TIMEOUT	•
•	BEEPER CONTROL FOR RADIO RESPONSE	•
•	BATTERY TYPE	•
•	SINGLE STORE	•
•	ADDRESS STAMPING	•
•	ADDRESS DELIMITER	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

RADIO PROTOCOL TIMEOUT

radio protocol timeout

Read a number from the table where:

02-19 = timeout from 2 to 19 seconds

◆ 2 seconds

See par. 4.7.1 for details.

POWER-OFF TIMEOUT

power-off timeout

Read 2 numbers in the range 00-99:

00 = Power-off disabled; reader always ready

01-99 = corresponds to a max. 99 hour delay before power-off.

power-off after 4 hours.

See par. 4.7.2 for details.

BEEPER CONTROL FOR RADIO RESPONSE

only good reception

See par. 4.7.3 for details.

BATTERY TYPE

OM-GRYPHON CRADLE ONLY

SINGLE STORE

two attempts

four attempts

six attempts

eight attempts

one attempt

three attempts

five attempts

seven attempts

nine attempts

See par. 4.7.4 for details

ADDRESS STAMPING

◆ disable cradle address stamping

enable cradle address stamping

See par. 4.7.5 for details.

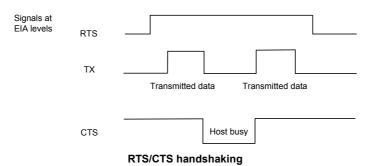
ADDRESS DELIMITER

◆ disable cradle address delimiter

enable cradle address delimiter and select characters

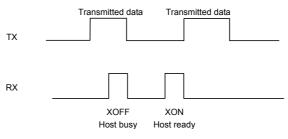
Read 2 HEX characters in the range 00-FE.

See par. 4.7.6 for details.


4 REFERENCES

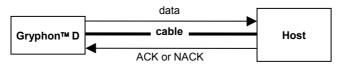
4.1 RS232 PARAMETERS

4.1.1 Handshaking

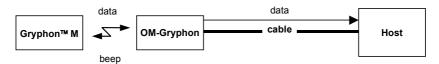

Hardware handshaking: (RTS/CTS)

The RTS line is activated by the decoder before transmitting a character. Transmission is possible only if the CTS line (controlled by the Host) is active.

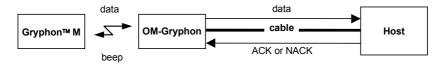
Software handshaking: (XON/XOFF)


During transmission, if the Host sends the XOFF character (13 Hex), the decoder interrupts the transmission with a maximum delay of one character and only resumes when the XON character (11 Hex) is received.

XON/XOFF handshaking


4.1.2 ACK/NACK from Host Protocol

<u>D-Series readers:</u> This parameter sets a transmission protocol in which the Host responds to the reader after every code transmitted. The Host sends an ACK character (06 HEX) in the case of good reception or the NACK character (15 HEX) requesting re-transmission, in the case of bad reception.



ACK/NACK enabled

M-Series readers: The transmission protocol takes place between reader, cradle and Host. The reader passes its data (code read) to the cradle which sends it to the Host. The Host sends an ACK character (06 HEX) in the case of good reception or the NACK character (15 HEX) requesting re-transmission, in the case of bad reception. Only then does the cradle respond to the reader with the good read tone.

ACK/NACK disabled

ACK/NACK enabled

If the reader does not receive an ACK or NACK, transmission is ended after the RX Timeout (see par. 4.1.4). See also Radio Protocol Timeout, par. 4.7.1 for M-Series readers.

Selection of the ACK/NACK protocol temporarily disables FIFO buffering see par. 4.1.3.

4.1.3 FIFO

Gryphon™ D Readers

This parameter determines whether data (barcodes) are buffered on a First In First Out basis allowing faster data collection in certain cases for example when using slow baud rates and/or hardware handshaking.

If the FIFO buffering is enabled, codes are collected and sent out on the serial line in the order of acquisition. About 800 characters can be collected (buffer full), after which the reader signals an error and discards any further codes until the transmission is restored.

If the FIFO buffering is disabled, each code must be transmitted before another one can be read.

Gryphon™ M Readers

This parameter is used to control radio reception from the guns to the <u>cradle when</u> the Host uses either RTS/CTS or XON/XOFF Handshaking.

If enabled, this command blocks radio reception to the cradle when the Host has interrupted RS232 data communication (CTS low or XOFF). The effect is that guns cannot send data to the cradle until the Host resumes data communication (CTS high or XON). This is similar to FIFO buffering disabled, where data can be collected only when communication is possible. In any case, prior to interruption, data is buffered in the cradle.

This command is only effective if handshaking is enabled. If used in a Multidrop Network, it only works for the Master cradle.

If disabled, guns continue to send data to the cradle which buffers them even if data communication has been interrupted by the Host (CTS low or XOFF). If the buffer becomes full, the gun signals an error and any further data is discarded until communication is restored. This is similar to FIFO enabled where data collection continues even through communication is interrupted.

4.1.4 RX Timeout

When the RS232 interface is selected, the Host can be used to configure the device by sending it command strings (see appendix A).

This parameter can be used to automatically end data reception from the Host after the specified period of time.

If no character is received from the Host, after the timeout expires, any incomplete string (any string not terminated by <CR>) is flushed from the device buffer.

4.2 PEN PARAMETERS

4.2.1 Minimum Output Pulse

This parameter sets the duration of the output pulse corresponding to the narrowest element in the barcode. In this way the code resolution is controlled by the signal sent to the decoder, independently of the physical resolution of the code read.

The shortest pulse (200 μ s) corresponds to a high resolution code emulation and therefore a shorter transfer speed to the decoder (for decoders able to work on high resolution codes). Likewise, longer pulses correspond to low resolution code emulation and therefore a longer transfer time to the decoder.

4.2.2 Conversion to Code 39 and Code 128

Gryphon™ D Series Readers

When using these readers it is possible to convert all codes to Code 39. By disabling this option the decoded codes will be transmitted in their original format; except for the following codes which are <u>ALWAYS</u> converted into Code 39 format: Codablock-A, Codablock-F Standard and EAN, MSI, Plessey, Telepen, Delta IBM, Code 11, Code 16K, Code 49, PDF417.

Gryphon™ M Series Readers

When using these readers it is possible to choose between converting the decoded codes into either Code 39 format or Code 128 format. It is not possible to disable conversion.

4.2.3 Overflow

This parameter generates a white space before the first bar and after the last bar of the code. The selections are as follows:

narrow = space 10 times the minimum output pulse.
medium = space 20 times the minimum output pulse.
wide = space 30 times the minimum output pulse.

4.2.4 Output and Idle Levels

The following state diagrams describe the different output and idle level combinations for Pen emulation:

Output and Idle Levels

4.2.5 Inter-Block Delay

For the PEN Emulation interface, data are sent to the Host in fixed size blocks of 20 characters each. The inter-block delay parameter allows setting a delay between each block sent to the Host.

4.3 DATA FORMAT

4.3.1 Header/Terminator Selection

The header/terminator selection is not effected by the reading of the restore default code. In fact, header and terminator default values depend on the interface selection:

RS232: no header, terminator CR-LF WEDGE: no header, terminator ENTER

These default values are <u>always</u> restored through the reading of RS232 or WEDGE interface selection code, see chapter 2.

For the WEDGE interface, the following extended keyboard values can also be configured:

EXTENDED KEYBOARD TO HEX CONVERSION TABLE				
	IBM AT IBM 3153 APPLE ADB	IBM XT	IBM 31xx, 32xx, 34xx, 37xx	Wyse Digital
HEX	KEY	KEY	KEY	KEY
83	ENTER	ENTER	FIELD EXIT	RETURN
84	TAB	TAB	TAB	TAB
85	F1	F1	F1	F1
86	F2	F2	F2	F2
87	F3	F3	F3	F3
88	F4	F4	F4	F4
89	F5	F5	F5	F5
8A	F6	F6	F6	F6
8B	F7	F7	F7	F7
8C	F8	F8	F8	F8
8D	F9	F9	F9	F9
8E	F10	F10	F10	F10
8F	F11	ESC	F11	F11
90	F12	BACKSPACE	F12	F12
91	HOME	HOME	ENTER	F13
92	END	END	RESET	F14
93	PG UP	PG UP	INSERT	F15
94	PG DOWN	PG DOWN	DELETE	F16
95	<u> </u>	<u> </u>	FIELD -	UP
96	\downarrow	\downarrow	FIELD +	DOWN
97	←	←	ENTER (Paddle)	LEFT
98	\rightarrow	\rightarrow	PRINT	RIGHT
99	ESC	ESC	-	ESC
9A	CTRL (Right)	CTRL (Right)		CTRL (Right)
9B	Euro	Space	Space	Space

For all readers using Wedge interface, all values from 9C to FE send the Space character.

SET CUSTOM EXTENDED HEADER/TERMINATOR KEYS

The extended Header/Terminator keys for <u>Wedge Interface</u> <u>users</u> can be customized by defining them through a simple keyboard setting procedure.

For example, the Numeric Keypad keys can be set for use as Headers or Terminators by substituting the default extended keys using this procedure.

The type of computer or terminal must be selected before activating the keyboard setting command.

Press and release a key to set it.

Some characters may require more than one key pressed simultaneously during normal use (refer to the manual of your PC or terminal for keyboard use). The exact sequence must be indicated to the reader in this case pressing and releasing the different keys.

Example:

If one has to press the "Shift" and "4" keys simultaneously on the keyboard to transmit the character "\$" to the video, to set the "\$", press and release "Shift" then press and release "4".

Each pressed and released key must generate an acoustic signal on the reader, otherwise repress the key. Never press more than one key at the same time, even if this corresponds to the normal use of your keyboard.

Press "Back space" to correct a wrong key entry. In this case the reader emits 2 beeps.

Note: "CAPS LOCK" and "NUM LOCK" must be off before starting the keyboard setting procedure. "SHIFT" must be repressed for each character and cannot be substituted by "CAPS LOCK".

Set Custom Extended Header/Terminator Keys

Read the code above.

- If the first 4 KEYS (Shift, Alt, Ctrl, and Backspace) are not available on your keyboard, you can only substitute them with keys not used, or substitute them with each other.
- Keys 5 to 28 must be defined

Press the desired keys in the following order:

The reader signals the end of the procedure with 2 beeps indicating the keys have been registered.

CUSTOM EXTENDED KEYBOARD SETTING TABLE			
		Custom	
Order	HEX	KEY	
01	-	Shift	
02	-	Alt	
03	-	Ctrl	
04	-	Backspace	
05	83		
06	84		
07	85		
08	86		
09	87		
10	88		
11	89		
12	8A		
13	8B		
14	8C		
15	8D		
16	8E		
17	8F		
18	90		
19	91		
20	92		
21	93		
22	94		
23	95		
24	96		
25	97		
26	98		
27	99		
28	9A		

Gryphon™ M Series Only

When working with Gryphon™ M series readers, the keyboard setup functioning is signaled by the LEDs on the OM-Gryphon cradle. Each key stroke corresponds to a double blinking of the green LED.

By pressing the Backspace key the red LED on the OM-Gryphon cradle blinks, while the green LED stays on.

Do not place the reader onto the OM-Gryphon cradle during this procedure. Otherwise, the battery charging will occur modifying the LEDs functioning.

Once the procedure has been completed, the green LED turns off.

4.4 POWER SAVE

4.4.1 Sleep State

This mode allows the μP in the reader to enter a "Sleep" state for minimum power consumption. For D-series readers, this command is only valid when hardware trigger type is selected.

Before entering Sleep mode, the following are verified:

- no commands coming from Host
- · no data being transmitted to Host
- Enter Sleep Timeout ended (see par. 4.4.2)

To exit Sleep mode press the trigger.

Enabling the Sleep state implements Standby mode for CCD devices, see par. 4.4.3.

For M-series readers, sleep state is entered immediately after reading a code and is not configurable. To exit Sleep mode press the trigger.

4.4.2 Enter Sleep Timeout

For readers that have the Sleep state enabled, this timeout determines when the reader will enter this state.

4.4.3 Standby

If this command is enabled, part of the CCD circuitry shuts down (Standby), in order to optimize low power consumption when not reading. When the trigger is pressed this circuitry powers up. This mode causes a minor delay of about 100 ms before the reader is ready.

For M-series readers, standby is always enabled and is not configurable. To exit Standby press the trigger.

4.5 READING PARAMETERS

4.5.1 Operating Mode

This group of parameters allows setting different reading modes for <u>either</u> Hand-Held operation or Stand operation:

- SoftwareTrigger: the reader is set in FLASH MODE. Code reading takes place during the flash on time;
- Hardware Trigger: the code reading is started with a trigger press (ON);
- Hardware Trigger Ready: the illuminator is switched ON when the reader sees a
 code. It functions as a pointer aiming at the code to be read. The reading phase
 starts only when the trigger is pressed. In this mode the reader is automatically
 set to trigger active level and one read per cycle parameters. (Only for Handheld operation).
- Automatic: The illuminator is switched ON when the reader sees a code. The reading phase starts automatically.
- Always ON: the illuminator is always ON and the reader always ready for code reading. <u>This value is not available for M-series readers</u>.

4.5.2 Hardware Trigger Mode

This mode determines how the reading phase is controlled when the hardware trigger operating mode is selected:

- trigger active level: the reader goes ON when the trigger is pressed and goes OFF when it is released
- trigger active pulse: the reader goes ON at the first trigger press and goes OFF only at a second press

4.5.3 Trigger-Off Timeout

When this timeout is selected, the reader turns OFF automatically after the desired period of time.

4.5.4 Reads per Cycle

In general, a **reading cycle** corresponds to the ON + OFF times of a device. The resulting effects of this parameter on code reading depend on other related configuration conditions. Here are the definitions of ON and OFF times.

- For readers using the software trigger parameter (FLASH MODE), a reading cycle corresponds to the flash on + flash off times. Code reading takes place during the flash on time.
- For readers using the hardware trigger parameter, a reading cycle corresponds to a trigger press (ON) + one of the following OFF events:

trigger release (for trigger active level)

a second trigger press (for trigger active pulse)

trigger-off timeout (see par. 4.5.3).

When **one read per cycle** is selected, the device decodes only one code during the ON period <u>and immediately turns the reader OFF</u>. It is only possible to read another code when the next ON time occurs.

In **multiple reads per cycle**, the ON period is extended so that the device can continue decoding codes until an OFF event occurs. For software trigger mode, the *flash on* period is immediately reset after each read and therefore extended. If another code is decoded before the reset *flash on* period expires, it is again reset and the effect is that the device remains ON, decoding codes until the *flash on* or *timeout* period expires.

The Safety Time parameter should be used in this case to avoid unwanted multiple reading of the same code, see par. 4.5.5.

4.5.5 Safety Time

Safety time prevents the device from immediately decoding the same code more than once. Same code consecutive reading can be disabled requiring the reader to be removed from the code (no decoding) for at least 400 ms, or a timeout can be set up to 9.9 seconds before the decoder will accept the same code. Reading is immediate if the code changes.

4.6 DECODING PARAMETERS

CAUTION

These parameters are intended to enhance the decoding capability of the reader for particular applications. Used incorrectly, they can degrade the reading performance or increase the possibility of a decoding error.

4.6.1 Ink-Spread

The ink-spread parameter allows the decoding of codes which are not perfectly printed because the page texture tends to absorb the ink.

4.6.2 Overflow Control

The overflow control parameter can be disabled when decoding codes printed on small surfaces, which don't allow the use of an overflow space.

This command does not effect code families 2/5, Code 128 and Code 93.

This command is forced (enabled) when PDF417 codes are enabled.

4.6.3 Interdigit Control

The interdigit control parameter verifies the interdigit spacing for code families Code 39 and Codabar.

4.7 RADIO PARAMETERS (M SERIES ONLY)

4.7.1 Radio Protocol Timeout

This parameter sets the valid time to wait before transmission between the M series reader and OM-Gryphon cradle is considered failed.

This parameter should be set taking into consideration the radio traffic (number of readers in the same area).

If the RS232 interface is used with ACK/NACK enabled, this parameter should be at least equal to the Rx Timeout parameter for low traffic environments. It should be increased if there are many readers in the same area.

It can be set between 2 and 19 seconds.

4.7.2 Power-Off Timeout

If this command is enabled, after the desired timeout in hours, the Gryphon™ batteries are disconnected and all power consumption ceases. To restore power, press the trigger once. The reader will now be ready to read codes.

Power-off does not effect configuration parameters.

4.7.3 Beeper Control for Radio Response

For M-Series readers, the data entry good read tone normally results in two beeps; the first indicates that the reader has decoded the code, the second indicates whether OM-Gryphon has received the data.

This can be changed according to the following selections:

- ◆ Normal: both good decode and good reception are signaled (two beeps).
- Only Good Decode: only the first beep indicating a good read is signaled.
- Only Good Reception: only the second beep indicating a good reception is signaled.
- Off: Neither good read nor good reception beeps are signaled.

For all configurations, any transmission errors will always be signaled.

4.7.4 Single Store

When single store mode is enabled, if the Gryphon™ M fails to transmit a code to the cradle, it enters a special operating mode that prevents the user from reading barcodes. When such operating mode is entered, the trigger no longer enables barcode reading but is used to retry transmission itself for the number of attempts selected in configuration. Once the transmission is successful the reader returns to the standard mode. If transmission is not successful after the number of configured attempts, single store is disabled.

Single store may be useful if you often read codes at the limit of the coverage area and there is a chance that code transmission can fail. In such case single store allows you to move to a more favorable position or location (i.e. closer to the cradle) and retry transmission without the necessity of re-reading the code since it is already stored in the reader.

Conversely, if single store is disabled, and the user wants to retry transmission, the code must be read again, and therefore the attempt must be made from basically the same location. If the user gives up, he does not know if the transaction was successful. (Actually the transmission could have been successful but the cradle may have been unable to acknowledge the message). There are applications in which there is no risk of transmission failure. In such cases it may be better to disable single store so that the user perceives a more consistent behaviour of the trigger in that it always corresponds to code reading.

4.7.5 Address Stamping

It is possible to include the cradle address in the message sent to the host. The cradle Address Stamping parameters consist of a 4-digit number in the range 0000-1999.

4.7.6 Address Delimiter

The Address Delimiters allow a character to be included to separate the Cradle Address stamping fields from the next fields in the message. Any character can be included in the hexadecimal range from 00 to FE.

4.8 CONFIGURATION COPYING COMMANDS

4.8.1 Copy Gryphon™ D-Series

Procedure:

① Connect the master (correctly configured reader) and the slave (reader to be configured) together through two RS232 serial interface cables and external power supply. Accessory cables and power supply are available from your Datalogic distributor to provide this connection.

RS232 Cables: CAB363 & CAB364 or CAB320 & CAB328

Power Supply: PG5

- Using the slave reader, read the Restore Default barcode and then the RS232 interface barcode from chapter 1 of this manual or from the Quick Reference Manual.
- 3 With the **master** reader, read the Configuration Copy barcode below.

Copy Configuration

\$+ZZ0\$-

The configuration will be copied from the master to the slave reader. The slave reader signals the end of the procedure with a series of beeps.

Note: The master reader can be configured for any interface.

4.8.2 Copy Gryphon™ M-Series

Procedure:

- ① Using the **slave** reader and its OM-Gryphon cradle, follow the initialization procedure in chapter 1 of this manual or from the Quick Reference Manual.
- With the master Gryphon™ M (correctly configured reader), read the Copy Configuration barcode below. Then place it onto an OM-Gryphon cradle within 10 seconds. The reader will beep indicating the configuration has been copied.

The configuration will be simultaneously sent over the RS232 interface of the OM-Gryphon. If this causes undesired effects disconnect the RS232 cable between the PC and OM-Gryphon during this process.

Copy Configuration

\$+ZZ0\$-

③ With the slave Gryphon™ M, read the Get Configuration barcode below. Then place it onto the same OM-Gryphon cradle used in the step above. <u>The slave</u> reader's address will not be changed.

Get Configuration

\$+ZZ2\$-

The configuration will be copied from the master to the slave Gryphon™ M. The slave Gryphon™ M signals the end of the procedure with a series of beeps. It is now ready to be used with its own OM-Gryphon cradle.

Repeat the procedure above to configure other slave readers. The OM-Gryphon can continue to configure slave readers until it receives another command or data.

4.8.3 Copy OM-Gryphon

Procedure:

- Using the slave reader and its OM-Gryphon cradle, read the Restore Default barcode, set the radio address, and then <u>read the RS232 interface barcode</u> from chapter 1 of this manual or from the Quick Reference Manual.
- © Connect the master OM-Gryphon and the slave OM-Gryphon (cradle to be configured) together through two RS232 serial interface cables and external power supply. Accessory cables and power supply are available from your Datalogic distributor to provide this connection.

RS232 Cables: CAB363 & CAB364 or CAB320 & CAB328

Power Supply: PG12

③ Read the Configuration Copy barcode below with a reader. Then place it onto the master OM-Gryphon cradle.

Copy Configuration

\$+ZZ3\$-

The configuration will be copied from the master OM-Gryphon to the slave OM-Gryphon. The reader signals the end of the procedure with a series of beeps.

Repeat the procedure above to configure other slave cradles.

Note: The master OM-Gryphon can be configured for any interface.

4.9 C-GRYPHON CONFIGURATION

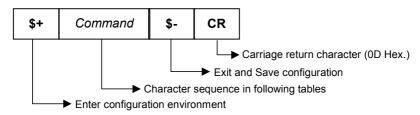
Battery selection is required only when the Gryphon™ M reader has an Alkaline battery and you want to use C-GRYPHON either for serial configuration, software upgrades or to hold Gryphon™ M. Since this type of battery must not be charged it is necessary to disable the C-GRYPHON charge function by following the procedure:

1 With the Gryphon™ M read the following code:

The green LED on the Gryphon™ M will blink, signaling the reader has accepted the command.

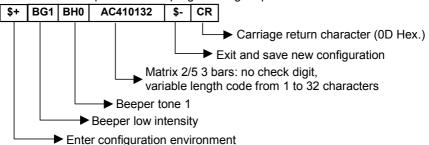
2. Place the reader onto the charger within 10 seconds. The green LED turns off and a short beep is emitted

To enable the charge function repeat step 1 and 2 substituting the "Alkaline" code with the following one:


Attempts to charge Alkaline batteries could cause leakage of liquid, generation of heat or, in extreme cases, explosion. If using Alkaline batteries, carefully follow the procedure above to avoid damage.

APPENDIX A HOST CONFIGURATION STRINGS

In this section we provide a description of how to modify the device configuration using serial strings sent from the Host.


This method requires the RS232 interface.

The device configuration can be changed by receiving commands from the Host through the serial interface. When this method is used, the programming sequence format is the following:

Example:

Multiple command programming sequence:

Each configuration parameter setting removes the condition previously active for that parameter.

NOTE

The device buffer can contain about 400 characters. If your programming string goes over this value, you must split it into separate groups and send each group after a delay of at least 3 seconds to give the reader time to empty the buffer and interpret the commands.

SERIAL CONFIGURATION STRINGS

ENTER/EXIT CONFIGURATION COMMANDS		
DESCRIPTION	STRING	
Enter Configuration	\$+	
Exit and Save Configuration	\$-	
Restore Default	\$*	
Transmit Software Release (not for PEN emulation)	\$!	

These commands do not require \$-.

INTERFACE SELECTION			
DESCRIP	DESCRIPTION		
RS232			CP0
WEDGE	for IBM AT		CP500
	for IBM Terminals: 31xx, 32xx, 34xx, 37xx	x; make-break keyboard	CP501
	for IBM Terminals: 31xx, 32xx, 34xx, 37xx	x; make-only keyboard	CP502
	Keyboard Type for IBM Terminals 31xx,	typewriter	FK0
	32xx, 34xx, 37xx	advanced	FK1
	for IBM XT		CP503
	for IBM Terminal 3153		CP504
	for IBM PC Notebook		CP505
	for IBM SURE1		CP506
	for IBM AT - ALT mode		CP507
	for IBM PC Notebook - ALT mode		CP508
	for Wyse Terminal - ANSI Keyboard		CP509
	for Wyse Terminal - PC Keyboard		CP510
	for Wyse Terminal - ASCII Keyboard		CP511
	for Wyse Terminal - VT220 style Keyboard		CP514
	for Digital Terminals VT2xx/3xx/4xx		CP512
for Apple ADB Bus		CP513	
PEN EMU	JLATION		CP6

R\$232		
DESCRIPTION		STRING
Baud rate	150	CD0
	300	CD1
	600	CD2
	1200	CD3
	2400	CD4
	4800	CD5
	9600	CD6
	19200	CD7
	38400	CD8
Parity	none	CC0
	even	CC1
	odd	CC2

	RS232 (continued)		
Data bits	7	CA0	
	8	CA1	
	9	CA2	
Stop bits	1	CB0	
	2	CB1	
Handshaking	disable	CE0	
	RTS/CTS	CE1	
	XON/XOFF	CE2	
	RTA always On	CE3	
ACK/NACK Protocol	disable	CF0	
	enable	CF3	
FIFO	disable	EC0	
	enable	EC1	
Inter-character delay (ms)		CK00 - CK99	
RX Timeout (100 ms)		CL00 - CL99	
Serial Trigger Lock	disable	CR0	
(D series only)	enable and select characters	CR1ab	

a = Hex values representing an ASCII character from **00** to **FE** enabling the device trigger.

b = HEX values representing an ASCII character from **00** to **FE** inhibiting the device trigger.

WEDGE				
DESCRIPTION		STRING		
Keyboard nationality	Belgian	FJ7		
	English	FJ4		
	French	FJ2		
	German	FJ3		
	Italian	FJ1		
	Spanish	FJ6		
	Swedish	FJ5		
	USA	FJ0		
Caps Lock	caps Lock ON	FE1		
	caps Lock OFF	FE0		
Num Lock	Toggle Num Lock	FL1		
	Num Lock Unchanged	FL0		
Delays	Inter-Character (ms)	CK00 - CK99		
	Inter-Code (s)	FG00 - FG99		
Control Character Emulation	Ctrl + Shift + Key	FO0		
	Ctrl + Key	FO1		

PEN			
DESCRIPTION		STRING	
Operating mode	interpret (does not require \$+ or \$-)	\$]	
	transparent (does not require \$+ or \$-)	\$[
Minimum output pulse	200μs	DG0	
	400μs	DG1	
	600μs	DG2	
	800μs	DG3	
	1 ms	DG4	
	1.2 ms	DG5	
Conversion to Code 39 and	disable conversion to Code 39	DA0	
Code 128	(D series only)		
	enable conversion to Code 39	DA1	
	enable conversion to Code 128	DA2	
	(M series only)		
Output level	normal	DD0	
	inverted	DD1	
Idle level	normal	DE0	
	inverted	DE1	
Overflow	narrow overflow	DH0	
	medium overflow	DH1	
	wide overflow	DH2	
Inter-Block delay (100 ms)		CK00-CK99	

	DATA FORMAT			
	NOT FOR PEN EMULATION INTERFACES			
DESCRIPTION		STRING		
Code Identifier	disable	EB0		
	Datalogic standard	EB1		
	AIM standard	EB2		
	Custom	EB3		
Custom Code Identifie	r	EHabc		
Headers	no header	EA00		
	one character	EA01x		
	two characters	EA02xx		
	three characters	EA03xxx		
	four characters	EA04xxxx		
	five characters	EA05xxxxx		
	six characters	EA06xxxxxx		
	seven characters	EA07xxxxxxx		
	eight characters	EA08xxxxxxxx		
Terminators	no terminator	EA10		
	one character	EA11x		
	two characters	EA12xx		
	three characters	EA13xxx		
	four characters	EA14xxxx		
	five characters	EA15xxxxx		
	six characters	EA16xxxxxx		
	seven characters	EA17xxxxxxx		
	eight characters	EA18xxxxxxxx		

a = ASCII character.

b, c, x = HEX values representing an ASCII character.

- a = ASCII character of the DATALOGIC STANDARD Code Identifier from the table on page 34.
- b = Hex value of the first Custom Code Identifier character from 00 to FE;
 FF = disable Code Identifier
- c = Hex value of the second Custom Code Identifier character from **00** to **FE**;

FF = disable second character of Custom Code Identifier

x = Hex value from 00 to FE

DATA FORMAT (continued)				
N	NOT FOR PEN EMULATION INTERFACES			
DESCRIPTION		STRING		
Code Length Tx	not transmitted	EE0		
	transmitted in variable-digit format	EE1		
	transmitted in fixed 4-digit format	EE2		
Field Adjustment	disable	EF0		
	right addition	EFa0d		
	left addition	EFa1d		
	right deletion	EFa2d		
	left deletion	EFa3d		
Field Adjustment Character		EGe		
Character Replacement	disable character replacement	EO0		
	first character replacement	EO1afg		
	second character replacement	EO2afg		
	third character replacement	EO3afg		

a = ASCII character.

d = a number from the Hex/Numeric Table

e, f, g = HEX values representing an ASCII character

a = ASCII character of the DATALOGIC STANDARD Code Identifier from the table on page 34.

d = a number in the range **01-32** from the Hex/Numeric Table

e = Hex value from 00 to FE

f = Hex value of the character to be replaced from 00 to FE

g = Hex value of the new character to insert from 00 to FE FF = replace with no new character (remove character)

POWER SAVE			
DESCRIPTION		STRING	
Scan Rate	67 scans per sec.	BT0	
	135 scans per sec.	BT1	
	270 scans per sec.	BT2	
Sleep State	disable	BQ0	
	enable	BQ1	
Enter Sleep Timeout (100 ms)		BR00-BR99	
Standby	enable	BM0	
	disable	BM1	

REA	DING PARAMETERS	
DESCRIPTION		STRING
Operating Mode	hand-held operation	BP0
	stand operation	BP1
	automatic	BP2
Hand-Held Operation	software trigger	BK0
	hardware trigger	BK1
	automatic	BK2
	always on	BK3
	hardware trigger ready	BK4
Stand Operation	software trigger	BU1
	hardware trigger	BU3
	automatic	BU0
	always on	BU2
Hardware Trigger Mode	trigger active level	BA0
	trigger active pulse	BA1
Trigger-off Timeout (s)		BD00 - BD99
FLASH ON (100 ms)		BB001 - BB099
FLASH OFF (100 ms)		BB101 - BB199
Reads per Cycle	one read	BC0
	multiple reads	BC1
Safety Time (100 ms)	•	BE00 - BE99
Beeper Intensity	very low intensity	BG0
	low intensity	BG1
	medium intensity	BG2
	high intensity	BG3
Beeper Tone	tone 1	BH0
	tone 2	BH1
	tone 3	BH2
	tone 4	BH3
Beeper Type	monotone	BJ0
	bitonal	BJ1
Beeper Length	long	BI0
· -	short	BI1
PDF Decoding Recognition Intensity	low	BW0
	high	BW1
Good Read Spot - Duration	disabled	BV0
·	short	BV1
	medium	BV2
	long	BV3

DECODING PARAMETERS			
DESCRIPTION		STRING	
Ink-spread	disable	AX0	
	enable	AX1	
Overflow control	disable	AW1	
	enable	AW0	
Interdigit control	disable	AV0	
	enable	AV1	
Puzzle Solver ^{IM}	disable	AU0	
	enable	AU1	
Decoding Safety	one read	ED0	
	two reads	ED1	
	three reads	ED2	
	four reads	ED3	

CODE SELECTION				
DESCRIPTION			STRING	
DISABLE AL	DISABLE ALL FAMILY CODES			
EAN/UPC	disable EAN/UPC family		AA0	
	EAN 8/EAN 13/UPC A/UPC E	without ADD ON	AA1	
		with ADD ON	AA5	
		with and without ADD ON	AA8	
	EAN 8/EAN 13	without ADD ON	AA3	
		with ADD ON 2 ONLY	AAK	
		with ADD ON 5 ONLY	AAL	
		with ADD ON 2 AND 5	AA6	
	UPC A/UPC E	without ADD ON	AA4	
		with ADD ON 2 ONLY	AAM	
		with ADD ON 5 ONLY	AAN	
		with ADD ON 2 AND 5	AA7	
	EAN 8 check digit transmission	disable	AAG0	
		enable	AAG1	
	EAN 13 check digit transmission	disable	AAH0	
		enable	AAH1	
	UPC A check digit transmission	disable	AAI0	
		enable	AAI1	
	UPC E check digit transmission	disable	AAJ0	
		enable	AAJ1	
	conversions	UPC E to UPC A	AAA	
		UPC E to EAN 13	AAB	
		UPC A to EAN 13	AAC	
		EAN 8 to EAN 13	AAD	

	CODE SELECTION (continued)					
DESCRIPTION					STRING	
	ISBN Convers	ISBN Conversion codes enable ISBN				
		enable ISSN			AP2	
			enable ISBN and IS	SSN	AP3	
			disable ISBN and IS	SSN	AP0	
Code 39	disable Code	39 fami	ly		AB0	
	Standard	no ch	eck digit control		AB11	
		chec	digit control and transmission		AB12	
		chec	digit control without transmission		AB13	
	Full ASCII		eck digit control		AB21	
		chec	digit control and transmission		AB22	
		chec	check digit control without transmission		AB23	
	CIP 39			AB3		
	Code 32				AB4	
	code length				AB*xxxx	
2/5	disable Code	2/5 fam	ily		AC0	
	Interleaved 2/	5	no check digit control		AC11xxxx	
			check digit control and transmiss	ion	AC12xxxx	
			check digit control without transmission		AC13xxxx	
	Normal 2/5 5	bars	no check digit control		AC21xxxx	
			check digit control and transmission		AC22xxxx	
			check digit control without transmission		AC23xxxx	
	Industrial 2/5	(IATA)	no check digit control		AC31xxxx	
			check digit control and transmission		AC32xxxx	
			check digit control without transmission		AC33xxxx	
	Matrix 2/5 3 b	ars	no check digit control		AC41xxxx	
			check digit control and transmiss	ion	AC42xxxx	
			check digit control without transmission		AC43xxxx	
	CIP/HR	CIP/HR				

xxxx = ASCII numbers that define the code length where:

- First 2 digits = minimum acceptable code length.
- Second 2 digits = maximum acceptable code length.

The minimum code length must always be less than or equal to the maximum.

The maximum code length for all codes is 99 characters:

Examples:

0132 = variable length from 1 to 32 digits in the code.

1010 = 10 digit code length only.

	CODE SELECTION (continued)					
DESCRIPTION				STRING		
Codabar	disable	e Codabar family			AD0	
	Standa	dard no start/stop character equality control nor transmission			AD111	
			no start/stop cha but transmission	, ,	control	AD112
			start/stop characted but no transmiss		trol	AD121
			start/stop character and transmission		trol	AD122
		Codabar	no start/stop cha but transmission		control	AD212
		ar ABC forced co	ncatenation			AD232
	code I	code length			AD*xxxx	
	start/stop character case		e in transmission	lower case		ADA0
		upper case		ADA1		
Code 128		sable Code 128 family			AI0	
	enable Code 128 - control without transmission of check digit				Al11	
	enable EAN 128 - control without transmission of check digit				Al21	
	add GS before Code		disable		EQ0	
			enable			EQ1
	ISBT 1	128	enable ISBT 128		Al31	
			enable all concatenations =		=&FN0	C3=<=>103d1
			disable all concatenations =&FN		C3=<=>103d0	
Code 93	disable	e Code 93 family				AK0
enab		e Code 93 - control without transmission of check digit				AK1
Codablock-A disable					AO0	
enable					AO1	
		disable the family	y			AN0
		enable Standard				AN1
		enable EAN				AN2

xxxx = ASCII numbers that define the code length where:

- First 2 digits = minimum acceptable code length.
- Second 2 digits = maximum acceptable code length.

The minimum code length must always be less than or equal to the maximum.

The maximum code length for all codes is 99 characters:

EXAMPLES:

0132 = variable length from 1 to 32 digits in the code.

1010 = 10 digit code length only.

	CODE SELECTION (continued))
DESCRIPTION		STRING
MSI	disable the family	AE0
	no check	AE1
	MOD10 no tx	AE2
	MOD10 with tx	AE3
	MOD11-MOD10 no tx	AE4
	MOD11-MOD10 with tx	AE5
	MOD10-MOD10 no tx	AE6
	MOD10-MOD10 with tx	AE7
Plessey	disable the family	AF0
-	Standard no check	AF11
	Standard check - with tx	AF12
	Standard check - no tx	AF13
	Anker no check	AF21
	Anker check - with tx	AF22
	Anker check - no tx	AF23
Telepen	disable the family	AL0
	Numeric no check	AL11
	Numeric check - with tx	AL12
	Numeric check - no tx	AL13
	Alpha no check	AL21
	Alpha check - with tx	AL22
	Alpha check - no tx	AL23
Delta IBM	disable the family	AH0
	no check	AH1
	Type 1 check	AH2
	Type 2 check	AH3
Code 11	disable the family	AG0
	no check	AG1
	Type C with tx	AG21
	Type C no tx	AG22
	Type K with tx	AG31
	Type K no tx	AG32
	Type C and K with tx	AG41
	Type C and K no tx	AG42
Code 16K	disable	AJ0
	enable	AJ1
Code 49	disable	AM0
	enable	AM1
PDF417	disable	AR0
	enable	AR1

RADIO PARAMETERS			
DESCRIPTION	STRING		
Radio Protocol Timeout	RH02-RH19		
Power-Off Timeout		RP00-RP99	
Beeper Control For Radio Response	normal	BF0	
	only good decode	BF1	
	only good reception	BF2	
	off	BF3	
Battery Type	alkaline	RB0	
	NiMh	RB1	
Single Store	disable	RO0	
	one attempt	RO1	
	two attempts	RO2	
	three attempts	RO3	
	four attempts	RO4	
	five attempts	RO5	
	six attempts	RO6	
	seven attempts	RO7	
	eight attempts	RO8	
	nine attempts	RO9	
Address Stamping	disable cradle address stamping	RU0	
	enable cradle address stamping	RU1	
Address Delimiter	disable cradle address delimiter	RV0	
	enable cradle address delimiter and select character	RV1a	

a = a HEX value in the range from **00 - FE** representing the ASCII character.

APPENDIX B CODE IDENTIFIER TABLE

2/5 Interleaved

2/5 normal 5 bars

EAN 8

UPC A

EAN 8 with 2 ADD ON

EAN 13 with 2 ADD ON

UPC A with 2 ADD ON

2/5 Industrial

2/5 matrix 3 bars

EAN 13

UPC E

EAN 8 with 5 ADD ON

EAN 13 with 5 ADD ON

UPC A with 5 ADD ON

UPC E with 5 ADD ON

Code 39 Full ASCII

ABC CODABAR

EAN 128

CIP/39

Code 32

UPC E with 2 ADD ON

Code 39

CODABAR

Code 128

Code 93

CIP/HR

ISBT 128

CODABLOCK-F Standard

CODABLOCK-F EAN

MSI

Plessey Anker

Plessey Standard

Delta IBM

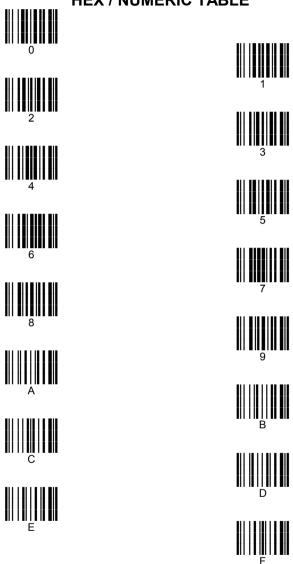
Telepen

Code 16K

Code 11

PDF417

Code 49


APPENDIX C HEX AND NUMERIC TABLE

OPEN THIS PAGE TO READ THE DESIRED HEX AND NUMERIC SELECTIONS

CHARACTER TO HEX CONVERSION TABLE					
char	hex	char	hex	char	hex
Char NUL SOH STX ENCK ENCK BEL ACK BES HT LF CR SOI DC1 DC2 DC3 DC4 NAK SYN ETB CAN EMB ESC FS GS RS US SPACE # \$% & ' ()				T	hex 55 56 57 58 59 5B 5C 5D 5E 5F 60 61 62 63 64 666 67 68 69 6A 6B 6C 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7D 7E

HEX / NUMERIC TABLE

Cancels an incomplete configuration sequence

